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A DFT-based reactivity descriptor, the nuclear stiffness, is related to the Raman scattering intensity, which
is experimentally accessible. The application of this new relationship obtained within certain approximations
has been checked in two different sets of molecules. First, we study a favorable case, where the contribution
of the anisotropy to the Raman intensity is zero (symmetric stretching mode in 15 tetrahedral molecules).
Second, we consider a “worst” case scenario, where the anisotropy contribution can be expected to be important
(stretching mode in 32 diatomic molecules). The numerical results clearly show a relationship between stiffness
and Raman intensity reflecting the expected anisotropy influence.

I. Introduction

Within the context of Conceptual Density Functional Theory
(DFT)1-6 it has been possible to define a series of response
properties describing the response of atomic or molecular
systems to various types of perturbations typical for a chemical
reaction: changes in external potential,ν(rb) (mostly changes
in the position of the nuclei), and in the number of electrons,
N.

This approach leads to a natural way to a series of “reactivity
descriptors” of the type∂nE/∂Nm∂νm′(rb) with n ) m+ m′,7 some
of them showing direct correspondence with longstanding but
sometimes rather vaguely defined chemical concepts such as
electronegativity (∂E/∂N)ν, chemical hardness (∂2E/∂N2)ν, which
themselves can be related to experimentally accessible quantities
such as the ionization energy and electron affinity. The most
trivial case is the electron density,F(rb), being equal to (δE/
δν(rb)N, which, in the solid state, is measurable via X-ray
diffraction experiments.8

The identification of higher derivatives with experimental
accessible quantities becomes less evident. In recent studies
some of the higher derivatives started to receive interest,9 one
of the examples being the nuclear Fukui function,φBR, defined
by Cohen as theN-derivative of the force,FBR, on nucleusR at
constant external potential, (∂FBR/∂N)ν.10

The nuclear Fukui functions received considerable interest
in studies by the present authors11,12 among others in view of
its role in interpreting Jahn-Teller distortions.11 The step
forward to itsN-derivatives was taken by Ordon and Komoro-
woski13 leading to a third-order derivative of the typeδ3E/
∂N2δν(rb), whereδν(rb) is identified as dRBR, a change in nuclear
position. This vectorial quantity termed nuclear stiffness and
denoted asGBR was studied by Komorowoski and co-workers
without however pointing out direct links with experimentally
accessible quantities which might be used to gain more insight
into its behavior, e.g., for similar molecules throughout the
periodic table.

In the present contribution it is shown that within certain
approximations the nuclear stiffness may be expected to
correlate with the Raman scattering intensity14 of certain modes

of vibration, which in principle are experimentally accessible.
Although the number of gas phase experimental data is not
extremely high, these quantities are, in principle, accessible.
Present day quantum chemical methods however also allow
obtaining vibrational Raman intensities with reasonable accuracy
(e.g., using DFT methods15) offering the possibility to test this
relationship between stiffness and Raman intensity computa-
tionally at a uniform level of calculation.

In this study the relationship is derived in section II, paying
particular attention to the approximations involved. Following
the Computational Details in section III, results are presented
and discussed for a case where the approximate relationship
can be expected to be fulfilled to a high degree (symmetric
stretching mode of tetrahedral molecules) and for a “worst” case
scenario (stretching of diatomic molecules).

II. Theoretical Background

The hardness,η, is a measure of the resistance of a chemical
species to change its electronic configuration.16 Thus, the
hardness is the second derivative of the energy with respect to
the number of electrons,N, at a fixed external potential,ν(rb):17

In contrast the first derivative of the energy with respect to the
number of electrons is the chemical potential,µ, and measures
the tendency of the electrons to escape from the considered
system:18

Using the finite difference approximation and the Koopmans’
theorem,19 we arrive at the following operational equations of
the hardness:

and
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where I and A are the first vertical ionization potential and
electron affinity of the neutral molecule, respectively, while
εLUMO and εHOMO are the energies of the lowest unoccupied
molecular orbital and the highest occupied molecular orbital,
respectively. The softness,S, is the inverse of the hardness:16

Connected to these global reactivity descriptors exists dif-
ferent reactivity principles, such as the hard-soft acid-base
principle (HSAB),20 the maximum hardness principle (MHP),21

and the minimum polarizability principle (MPP).22 The MHP
affirms that, at a given temperature and external potential,
molecular systems evolve to a state of maximum hardness. In
contrast the MPP states that any system tends toward a state of
minimum polarizability. The MPP is based on the MHP and
the empirical inverse relationship between hardness and polar-
izability (R). Indeed, it has been proposed that softness and
polarizability are correlated, the most convincing arguments23-27

being given for a relationship betweenS and 〈R〉1/3.

where〈R〉 is one-third of the trace of the polarizablility tensor,

The MHP and the MPP have been applied to a number of
different chemical processes (molecular vibrations, internal
rotations, excited states, aromaticity, and chemical reactions)
with numerous achievements28 but also various described
breakdowns.29

Changing the energy for the electronic force,FBR, in eqs 1
and 2, we obtain a new set of reactivity indexes that describes
the response of the nuclei due to the changes inN. The nuclear
Fukui function has been defined by Cohen and co-workers:10

and the nuclear stiffness by Ordon and Komorowski:13

Using a Maxwell relation, it is possible to express the nuclear
Fukui function and the nuclear stiffness in function of the
nuclear displacement,RBR:30

and

The reported values of these properties have mainly been done
in diatomic molecules12,31and some polyatomic molecules.11,32

Now, from eq 11, using eq 5 and the relationship between the

cube root of mean polarizability and softness ( eq 6), one obtains

In a diatomic molecule the natural choice of displacement
coordinate is the internuclear distance,R, converting the stiffness
from a vectorial to a scalar quantity. Using the chain rule, one
finds that

with

whereµ is the reduced mass. The Raman scattering intensity
corresponding to a fundamental vibration,ν, with associated
normal coordinate,Q, is essentially governed by〈R〉′ and γ′,
the derivatives of the isotropic polarizability and the anisotropy
with respect to the normal coordinate, respectively.

and

Assuming thatγ′ is negligible, the Raman scattering intensity
is proportional to the square of the polarizability derivative

A comparison of eqs 13 and 17 leads to the following
relationship:

where xµ was moved to the left-hand side. Equation 18
connects the derivative of the polarizability with respect to the
normal coordinates, governing the Raman intensity, with the
stiffness.

It is worth noting that both “positive” and “negative”
deviations from the equilibrium structure along nontotally
symmetric vibrational modes yield molecular configurations that
have unchanged values for properties such asE, µ, η, and〈R〉,28a

transforming according to the totally symmetric irreducible
representation of the molecular symmetry point group. Then, it
follows that numerically (∂E/∂Q) ) (∂µ/∂Q) ) (∂η/∂Q) ) (∂〈R〉/
∂Q) ) 0 at the equilibrium geometry. Hence, for nontotally
symmetric vibrational modes the stiffness is zero; therefore,
these cases will obviously not be discussed further.

The aim of the present work is to study the applicability of
these new relationships in two very different sets of molecules,
the results of which have to be seen as a (positive) test of the
relationships rather than a proof in the mathematical sense of
the word. First, we study the most favorable case, where the
contribution of the anisotropy to the intensity is zero. This is
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the case of tetrahedral molecules XY4, more precisely in their
symmetric stretching mode, where the diagonal elements of the
polarizablility tensor remain mutually equal and the off-diagonal
elements remain zero upon stretching. Second, a simple “worst”
case scenario was considered, where the anisotropy contribution
can be expected to be very important, namely the stretching
mode of diatomic molecules, where nonzero terms are appearing
in the (R′ii - R′jj)2 contributions toγ′.

III. Computational Details

All calculations have been carried out with the GAUSSIAN
98 package33 at the B3LYP level34 using the aug-cc-pVTZ basis
set.35 All calculations of this work were also done using the
Hartree-Fock instead of the B3LYP method with the same basis
set yielding qualitatively the same results. The energy and
gradient of the neutral, cationic, and anionic are always
calculated using the most stable multiplicity. The cationic and
anionic species have been evaluated at the geometry of the
neutral systems. WithN electrons all the systems are singlets,
except the triplets O2, S2, Se2, HN, and HP and the doublets
HO, HS, HC, and HSi. The cationic species are doublet, with
the exception of the singlets HO and HS and the triplets HC
and HSi. Finally, the anionic species are always doublets, apart
from the triplets HO and HS and the singlets HC and HSi. In
this work, we evaluate the nuclear stiffness in three different
ways:

whereη1 andη2 are calculated using eqs 3 and 4, respectively.
The numerical differentiation ofη1 andη2 has been carried out
performing displacements of the equilibrium geometry of((1,
2, 4, 8, 16, 32, 64, 128, 256, 512)× 10-4Q, whereQ is the
normal mode studied. Then, the smallest magnitude displace-
ment that produced a stable derivative has been selected using
a Romberg method triangle.36 In eq 19 the derivative of the
energy with respect to the displacement is evaluated analytically,

and the derivative with respect to the number of electrons,
numerically; while in eqs 20 and 21 the derivatives are evaluated
numerically. The problem of eq 1 is that it can only be strictly
applied using an integer number of electrons (∆N ) (1).37 In
contrast, for the numerical differentiation with respect to the
displacements it is possible to make the increments very small
and to obtain numerical derivatives nearly as accurate as the
analytical ones. Thus, the results obtained with eqs 19 and 20
are identical, and we only show the results forG1 andG2.

IV. Results and Discussion

In this section, we will study the “best” (symmetrical
stretching of tetrahedral molecules) and the “worst” (stretching
of diatomic molecules) conditions to evaluate the validity of
the relationship between the Raman intensity and the stiffness.

(A) Tetrahedral Molecules. The tetrahedral molecules
studied are CH4, CD4, CF4, CCl4, CBr4, SiH4, SiD4, SiF4, SiCl4,
SiBr4, GeH4, GeD4, GeF4, GeCl4, and GeBr4. In the case of the
symmetric stretching of these molecules, the relationship that
connects nuclear stiffness and Raman scattering intensity is
slightly different from the diatomic case (eq 18). It can be
written as

whereQ ) SxmY, with S as the symmetry coordinate corre-
sponding to the symmetric stretching andmY as the mass of the
four equivalent atoms of the tetrahedral XY4 molecules. Table
1 collects the values of the hardness using the two approxima-
tions (eqs 3 and 4), the cube root of mean polarizability, and
the different factors entering eq 22. The derivative of the
hardness with respect to the symmetric stretching has also been
calculated using the two approximations of the hardness (eqs
20 and 21). It is worth noting that the results of (∂η1/∂S) and
(∂η2/∂S) are always negative and very similar, more thanη1

and η2. Thus one can be confident in the reliability of the
stiffness results obtained. For the relationships between softness
and polarizability and stiffness and Raman intensity, all the
results ofη, S, andG refer to the approximation of the hardness
I - A, i.e., η1, S1, and G1 (with the εLUMO - εHOMO

approximation the conclusions are the same).
As can be seen in Figure 1, a good correlation betweenS1,

the inverse ofη1, and 〈R〉1/3 is obtained. Taking into account
that the anisotropy for the symmetric stretching of the tetrahedral

TABLE 1: Properties for the Tetrahedral Molecules Studied in This Work; All Values Are Calculated at the B3LYP/
aug-cc-pVTZ Levela

molecules η1
b η2

b 〈R〉1/3b (∂η1/∂S)b (∂η2/∂S)b |(∂η1/∂Q)|b I (Å4/amu) xI/3〈R〉4/3 b

CH4 0.541 0.387 2.572 -0.067 -0.055 0.067 227.282 0.410
CD4 0.541 0.387 2.572 -0.067 -0.055 0.047 113.735 0.290
CF4 0.614 0.458 2.693 -0.003 -0.003 0.001 8.753 0.067
CCl4 0.397 0.248 4.152 -0.091 -0.098 0.015 22.662 0.019
CBr4 0.320 0.183 4.682 -0.074 -0.073 0.008 18.132 0.011
SiH4 0.477 0.346 3.180 -0.038 -0.037 0.038 396.476 0.232
SiD4 0.477 0.346 3.180 -0.038 -0.037 0.027 198.391 0.164
SiF4 0.584 0.427 2.852 -0.046 -0.069 0.011 9.765 0.056
SiCl4 0.424 0.290 4.288 -0.074 -0.120 0.013 25.231 0.018
SiBr4 0.355 0.226 4.830 -0.089 -0.098 0.010 19.490 0.010
GeH4 0.463 0.331 3.294 -0.036 -0.043 0.036 449.907 0.214
GeD4 0.463 0.331 3.294 -0.036 -0.043 0.025 225.126 0.152
GeF4 0.554 0.362 3.030 -0.046 -0.069 0.011 16.990 0.058
GeCl4 0.380 0.237 4.421 -0.115 -0.119 0.019 37.869 0.019
GeBr4 0.318 0.186 4.957 -0.092 -0.091 0.010 27.567 0.010

a η1, η2, 〈R〉, (∂η1/∂S), and (∂η2/∂S) are calculated using eqs 3, 4, 7, 20, and 21.b Atomic units.

G0 ) - (∂2F
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ν
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molecules is zero, one can expect that we are in front of the
“best” conditions to obtain an excellent correlation between
stiffness and Raman intensity.

The fulfillment of the relationship of eq 22 is shown in Figure
2 and illustrates a tendency between these properties, although
some molecules (CF4, GeCl4, and CCl4) deviate.

The hardness is an important reactivity index, because it
shows the resistance of a molecule to change its electronic cloud.
A molecule or atom with a big value of hardness will be a
species with a high resistance to offer/accept electrons to/from
another system, and it will show a high affinity to interact with
other hard molecules (HASB principle). A small hardness value
implies an important tendency to offer and accept electrons and

a likeness to interact with soft molecules. But during a chemical
reaction, the molecules change their nuclear positions and their
electronic density. Therefore it is interesting to study not only
the hardness at the equilibrium geometry but also its derivative
with respect to nuclear displacements, the stiffness.

A small value of stiffness involves that the hardness along
the nuclear displacement is nearly constant, pointing out the
system shows similar reactivity as in the equilibrium geometry
(in the Koopmans’ approximation, it implies that the HOMO
and LUMO energies remain almost constant). This is the case
of tetrahedral molecules with Y) H, D, and F showing large
values for the hardness (η1 g0.46 andη2 g0.33) and relatively
small absolute values of stiffness (|∂η/∂S| e0.070). It is worth
noting that the hardest system, CF4, also presents the smallest

Figure 1. Correlation between the cube root of the mean polarizability
and softness, 1/(I - A), for the tetrahedral molecules studied. All values
are given in atomic units.

TABLE 2: Properties for the Diatomic Molecules Studied in This Work; All Values Are Calculated at the B3LYP/aug-cc-pVTZ
Levela

molecules η1
b η2

b 〈R〉1/3b G1
b G2

b |G1|/xµb I (Å4/amu) xI/3 〈R〉4/3 b 45(d〈R〉/dQ)2/I‚0.01b

HF 0.617 0.397 1.775 -0.101 -0.108 0.103 38.910 0.748 70.4
DF 0.617 0.397 1.775 -0.101 -0.108 0.075 20.449 0.543 70.4
HCl 0.485 0.311 2.599 -0.046 -0.086 0.046 89.919 0.248 64.3
HBr 0.445 0.277 2.902 -0.044 -0.095 0.044 119.727 0.184 63.1
H2 0.646 0.449 1.770 -0.161 -0.149 0.227 162.337 1.545 91.1
D2 0.646 0.449 1.770 -0.161 -0.149 0.161 81.231 1.093 91.1
HLi 0.289 0.145 3.104 -0.036 -0.030 0.039 648.232 0.326 88.0
HNa 0.261 0.127 3.548 -0.031 -0.027 0.031 732.092 0.203 77.8
HB singlet 0.343 0.144 2.861 0.005 0.013 0.006 250.735 0.281 10.3
HAl singlet 0.292 0.136 3.626 0.001 0.004 0.001 332.517 0.126 12.0
HN triplet 0.486 c 2.165 -0.026 c 0.027 93.760 0.525 50.8
HP triplet 0.333 c 3.062 -0.006 c 0.006 160.805 0.172 47.3
HO doublet 0.422 c 1.958 -0.040 c 0.041 60.823 0.631 64.2
HS doublet 0.299 c 2.833 -0.012 c 0.012 120.833 0.203 57.8
HC doublet 0.355 c 2.476 -0.014 c 0.015 147.235 0.384 13.3
HSi doublet 0.248 c 3.394 -0.002 c 0.002 208.284 0.130 30.9
F2 0.563 0.265 2.020 -0.241 -0.268 0.078 9.821 0.224 56.0
Cl2 0.380 0.178 3.146 -0.102 -0.116 0.024 16.087 0.049 64.5
Br2 0.328 0.144 3.575 -0.079 -0.085 0.013 12.027 0.025 64.4
FCl 0.440 0.206 2.639 -0.114 -0.139 0.033 11.391 0.083 47.4
FBr 0.394 0.176 2.901 -0.093 -0.110 0.024 10.962 0.056 43.4
ClBr 0.351 0.158 3.367 -0.089 -0.098 0.018 15.070 0.036 63.5
Li 2 0.181 0.081 5.823 -0.015 -0.013 0.008 1948.747 0.046 74.4
Na2 0.177 0.075 6.126 -0.015 -0.012 0.004 604.399 0.021 71.8
N2 0.651 0.406 2.284 -0.193 -0.259 0.073 23.984 0.214 80.6
P2 0.361 0.186 3.698 -0.113 -0.106 0.029 70.750 0.054 79.3
As2 0.326 0.159 3.991 -0.096 -0.088 0.016 39.063 0.029 81.1
SO 0.265 0.047 2.880 0.007 0.001 0.002 18.400 0.074 31.4
CO 0.562 0.346 2.363 -0.035 -0.136 0.013 17.615 0.160 71.9
O2 triplet 0.477 c 2.191 -0.003 c 0.001 17.035 0.213 64.6
S2 triplet 0.299 c 3.458 -0.004 c 0.001 44.229 0.055 66.1
Se2 triplet 0.271 c 3.852 -0.005 c 0.001 28.778 0.029 66.0

a η1, η2, 〈R〉, G1, andG2 are calculated using eqs 3, 4, 7, 20, and 21.b Atomic units.c Not evaluated, because the ground state of this system is
an open-shell system.

Figure 2. A representation of the relation|(∂η/∂Q)| ∝ xI/3〈R〉4/3 for
the tetrahedral molecules studied. All values are given in atomic units.
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stiffness value, indicating that its hardness will be nearly
unchanged along the symmetric stretching. In contrast, the
tetrahedral molecules with Y) Cl and Br are softer than the
previous molecules at their equilibrium geometry, showing their
huge predisposition to offer/accept electrons, and display bigger
absolute values of stiffness, showing that this predisposition
further will quickly increase upon symmetric stretching (∂η/∂S
< 0).

(B) Diatomic Molecules.In the same way as Table 1, Table
2 contains all the required information to evaluate the relation-
ships between cubic root of mean polarizability vs softness and
Raman intensity vs stiffness of the diatomic molecules studied
in this work. In contrast to the last section, there are some
diatomic molecules for which the propertiesη2 andG2 are not
evaluated, because their ground state is not a singlet, producing
the problem of correctly defining the hardness using Koopmans’
theorem. For the remaining molecules, the results ofG1 andG2

are very similar, except for systems with a complicated
electronic structure as N2 and CO.

Although the existence of a tendency between softness and
the cubic root of mean polarizability is clear (see Figure 3), the
correlation〈R〉1/3 vs S1 is worse than the previous case. This
fact is not quite surprising, taking into account the high similarity
among the isotropic tetrahedral molecules and the diversity of
anisotropic diatomic molecules that we are studying in this
section (ionic systems vs covalent systems with single, double,
and triple bonds).

The correlation between|G1|/xµ with xI/3〈R〉4/3 is also not
excellent (see Figure 4). The anisotropy of the diatomic
molecules and the worse correlation between〈R〉1/3 andS1 can
be some of the reasons of the nontotal fulfilment of eq 18.
Notwithstanding, it is possible to note a tendency between
stiffness and Raman intensity, especially when looking at similar
systems. For instance, the interhalogen diatomic molecules (F2,
Cl2, Br2, FCl, FBr, and ClBr) show anR2 of 0.9964 between
|G1|/xµ andxI/3〈R〉4/3. The subgroup of diatomic molecules
containing a hydrogen atom plus an atom varying along a given
period of the periodic table (HF, HO, HN, HC, and HB) displays
an R2 of 0.8159 for|G1|/xµ vs xI/3 〈R〉4/3}.

To analyze the effect of the anisotropy in the correlation
between |G1|/xµ with xI/3 〈R〉4/3, Table 2 includes the
percentage of the isotropic contribution, 45(d〈R〉/dQ)2, to the
Raman intensity. Figure 5 contains the plot of the isotropic
contribution versus the total Raman intensity. As can been seen,
the anisotropy contribution to the Raman intensity, 7γ′2,

becomes dominant in some molecules; e.g., the HB singlet and
CH doublet the isotropic part only represents the 10.3 and 13.3,
respectively, percentage to the Raman intensity. These systems
also show a significant deviation in the general tendency
depicted in Figure 4, although this result is not always true.
For instance, N2 and P2 have a relatively small anisotropy
contribution to the intensity (see Table 2) but display a notable
deviation in Figure 4, which can be explained by the worse
correlation between〈R〉1/3 and S1. In contrast,F2 shows a
considerable anisotropy contribution and a good fit in the
tendency of Figure 3, resulting in a poor point in the correlation
between|G1|/xµ with xI/3〈R〉4/3. In conclusion, it seems that
a small anisotropy and a good correlation between〈R〉1/3 andS
are required to obtain good relationships in eq 22, and the
breakdowns of these conditions are responsible for the dispersion
of data points in both Figures 2 and 4.

V. Conclusions

An approximate scheme is presented to derive an expression
that connects the stiffness, a third order derivative of the energy,

Figure 3. Correlation between the cube root of the mean polarizability
and the softness, 1/(I-A), for the diatomic molecules studied, except
Li 2 and Na2 due their larger polarizabilities values. All values are given
in atomic units.

Figure 4. A representation of the relation|G1|/xµ ∝ xI/3〈R〉4/3 for
the diatomic molecules studied. All values are given in atomic units.

Figure 5. Calculated total Raman intensity versus its isotropic part
for the diatomic molecules studied. The diagonal represents the situation
with anisotropy contribution equal to zero. All values are given in
atomic units.
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with an experimentally accessible quantity, the Raman scattering
intensity. We test the applicability of this new equation in two
representative sets of molecules. The numerical results confirm
the expected relationship between these two properties, including
their anisotropy influence. For systems where the contribution
of the anisotropy to the intensity is zero (tetrahedral molecules),
a good linear relationship shows up between the square root of
the intensity and the stiffness. The results obtained with the
diatomic molecules are, as expected, less clear-cut, as can be
rationalized by the worse correlation between〈R〉1/3 andSand
the relatively important anisotropy contribution to the intensity
shown by some of these molecules. It is worth noting that the
latter relationships improve considerably when looking at similar
systems (interhalogens diatomic molecules and hydrogen plus
an atom varying along a given period of the periodic table).
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